
Online Algorithms:
going beyond the worst-case

Anupam Gupta (New York University)

analysis of algorithms

reigning paradigm: worst-case analysis of algorithms

how does the algorithm perform on its worst-possible input?

analysis of algorithms

reigning paradigm: worst-case analysis of algorithms

+ robustness

+ wide applicability

+ many algorithms with good worst-case bounds

+ often less contentious

Naturally, there are shortcomings as well…

- pessimism, and insensitivity to data model/predictions

analysis of algorithms

Ideally: want to get algorithms that are good for

worst-case and “best-case” and …. all cases.

Worst-case: robustness when data is unpredictable

“Best-case”: efficiency when data follows anticipated patterns

How to go beyond the worst case?

let’s see glimpse of ideas/techniques in context of online algos

Online Algorithms

Requests arrive over time, must be served immediately/irrevocably

Goal: (say) minimize cost of the decisions taken

Competitive ratio of algorithm 𝐴𝐴:

max
instances 𝐼𝐼

cost of algorithm 𝐴𝐴 on instance 𝐼𝐼
optimal cost to serve 𝐼𝐼

Want to minimize the competitive ratio.

Metric space. n points arrive over time, maintain a connected tree.

Goal: minimize cost of tree

Competitive ratio of algorithm 𝐴𝐴:

max
instances 𝐼𝐼

cost of algorithm 𝐴𝐴 on instance 𝐼𝐼
optimal cost to serve 𝐼𝐼

Want to minimize the competitive ratio.

Online (Steiner) Tree

𝑣𝑣1

𝑣𝑣2

𝑣𝑣3𝑣𝑣4

𝑣𝑣5
𝑣𝑣6

Online Set Cover

Set system. n elements arrive over time, want to maintain a cover.

Goal: minimize cost of sets picked

Competitive ratio of algorithm 𝐴𝐴:

max
instances 𝐼𝐼

cost of algorithm 𝐴𝐴 on instance 𝐼𝐼
optimal cost to serve 𝐼𝐼

Want to minimize the competitive ratio.

𝑆𝑆1

𝑣𝑣2
𝑣𝑣3𝑣𝑣1

𝑆𝑆2

𝑆𝑆3

Competitive ratio of algorithm 𝐴𝐴:

max
instances 𝐼𝐼

cost of algorithm 𝐴𝐴 on instance 𝐼𝐼
optimal cost to serve 𝐼𝐼

Want to minimize the competitive ratio.

max-K finding

𝑛𝑛 people arrive over time, each has value 𝑣𝑣𝑖𝑖 -- can pick at most 𝐾𝐾

Goal: (say) maximize sum of values of picked people

Competitive ratio of algorithm 𝐴𝐴:

min
instances 𝐼𝐼

value of algorithm 𝐴𝐴 on instance 𝐼𝐼
optimal value on instance 𝐼𝐼

Want to maximize the competitive ratio.

price of uncertainty

Steiner tree

Offline Online

~1.3 Ω(log𝑛𝑛)

Set Cover 𝑂𝑂(log𝑛𝑛) Ω(log2 𝑛𝑛)

Max-K-find 1 O(𝐾𝐾/𝑛𝑛)

can we do better in non-worst-case settings?

today’s menu

models to go beyond worst-case: max-find, spanning tree, set cover

but don’t overfit to these models: max-k-finding

and perhaps use predictions…: paging/caching

price of uncertainty

Steiner tree

Offline Online

~1.3 Ω(log𝑛𝑛)

Set Cover 𝑂𝑂(log𝑛𝑛) Ω(log2 𝑛𝑛)

Max-K-find 1 O(𝐾𝐾/𝑛𝑛)

max-1 finding

n people arrive over time, each has value 𝑣𝑣𝑖𝑖 -- pick at most one

Goal: maximize value of picked person

worst-case instance:

𝑡𝑡 = 0 𝑡𝑡 = 1

random guessing is the best option here
⇒ 1/𝑛𝑛 chance of success

going beyond the worst case

Ways to model non-worst-case instances?

1. values in bounded range

2. draws from some stochastic process? (Say 𝑣𝑣𝑖𝑖 ∼ 𝒟𝒟𝑖𝑖)

3. maybe arrival order is not worst-case?

4. train NN to find patterns, give predictions

5. …

prophet model

𝑛𝑛 items arrive online, have value 𝑅𝑅𝑖𝑖 ∼ 𝒟𝒟𝑖𝑖 (indep.) Distributions 𝒟𝒟𝑖𝑖 known.

Pick one item. Maximize (expected) value.

Algorithm:

Take one sample 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛 from each distribution.

Set threshold 𝑇𝑇 ← their maximum

Pick first 𝑅𝑅𝑖𝑖 above threshold 𝑇𝑇

[Krengel and Sucheston 78]
[Rubinstein Wang Weinberg 20]

Thm: 𝔼𝔼 𝐴𝐴𝐴𝐴𝐴𝐴 ≥ ⁄1 4 𝔼𝔼[max
𝑖𝑖
𝑅𝑅𝑖𝑖]

[Kesselheim 17]

prophet model
[Krengel and Sucheston 78]

[Rubinstein Wang Weinberg 20]

Samples 𝑆𝑆1, … , 𝑆𝑆𝑛𝑛 Real values 𝑅𝑅1, … ,𝑅𝑅𝑛𝑛

𝑊𝑊1 > 𝑊𝑊2 > ⋯ > 𝑊𝑊2𝑛𝑛

sort

Pr[𝑊𝑊1 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝐴𝐴] = ½

Pr 𝑊𝑊2 𝑖𝑖𝑖𝑖 𝑖𝑖𝑟𝑟𝑠𝑠𝑠𝑠𝐴𝐴𝑟𝑟 𝑊𝑊1 𝑟𝑟𝑟𝑟𝑟𝑟𝐴𝐴] ≥ ½

Thm: 𝔼𝔼 𝐴𝐴𝐴𝐴𝐴𝐴 ≥ ⁄1 4 𝔼𝔼[max
𝑖𝑖
𝑅𝑅𝑖𝑖]

⇒ Pr 𝑊𝑊1 = 𝑅𝑅max 𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑟𝑟𝑛𝑛 ≥ ¼

Can get ⁄1 2 !!

[Kesselheim 17]

secretary model

𝑛𝑛 items have values chosen by adversary. But arrive online in random order.

Pick one item. Maximize (expected) value.

Algorithm:

Ignore first ⁄1 2 fraction of items.

Set threshold 𝑇𝑇 ← their maximum

Pick first item among remaining above threshold 𝑇𝑇

[Flood 49, Gardner 60, Dynkin 63]

Can get ⁄1 𝑒𝑒 !!

Thm: 𝔼𝔼 𝐴𝐴𝐴𝐴𝐴𝐴 ≥ ⁄1 4 𝑂𝑂𝑂𝑂𝑇𝑇

algos with predictions

Train a classifier to predict if current item is maximum among remaining

Model: like sec’y, but each prediction correct w.p. 𝑠𝑠 ≥ ⁄1 2 independently

[Dütting Lattanzi Paes Leme Vassilvitskii 21]

Algo: ignore some fraction of elements

- then (for some fraction) pick any item that is best so far, and predictor = “Yes”

- then (for remaining fraction) pick any item that is best so far (ignore predictor)

Theorem: optimal performance for this model.

price of uncertainty

Steiner tree

Offline Online

~1.3 Ω(log𝑛𝑛)

Set Cover 𝑂𝑂(log𝑛𝑛) Ω(log2 𝑛𝑛)

Max-K-find 1 O(𝐾𝐾/𝑛𝑛) Ω(1)
prophet, RO

BWC

rest of today’s menu

models to go beyond worst-case: spanning tree and set cover

but don’t overfit to these models: max-k-finding

and perhaps use predictions…: paging/caching

online (steiner) tree

Goal: minimize total cost of edges

Suppose n requests

[Imase Waxman 91]

Connect each request on arrival

Worst-case comp.ratio: Θ(log𝑛𝑛)

prophet (steiner) tree

Suppose n requests: vertex 𝑅𝑅𝑖𝑖 ~ 𝒟𝒟𝑖𝑖

Algorithm:

For all i, take one sample 𝑆𝑆𝑖𝑖 ~ 𝒟𝒟𝑖𝑖 each

Build MST on 𝑆𝑆1, … , 𝑆𝑆𝑛𝑛

When actual requests 𝑅𝑅𝑖𝑖 ~ 𝒟𝒟𝑖𝑖 arrive:
connect to closest previous point

[Garg G. Leonardi Sankowski 08]

Connect each request on arrival

Goal: minimize total cost of edges

prophet (steiner) tree

Suppose n requests: vertex 𝑅𝑅𝑖𝑖 ~ 𝒟𝒟𝑖𝑖

Algorithm:

For all i, take one sample 𝑆𝑆𝑖𝑖 ~ 𝒟𝒟𝑖𝑖 each

Build MST on 𝑆𝑆1, … , 𝑆𝑆𝑛𝑛

When actual requests 𝑅𝑅𝑖𝑖 ~ 𝒟𝒟𝑖𝑖 arrive:
connect to closest previous point

Connect each request on arrival

𝔼𝔼 𝑀𝑀𝑆𝑆𝑇𝑇 𝑆𝑆1, … , 𝑆𝑆𝑛𝑛 = 𝔼𝔼 𝑀𝑀𝑆𝑆𝑇𝑇 𝑅𝑅1, … ,𝑅𝑅𝑛𝑛

𝔼𝔼 𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡 𝑅𝑅𝑖𝑖 ≤ 𝔼𝔼[𝑑𝑑𝑖𝑖𝑖𝑖𝑡𝑡 𝑅𝑅𝑖𝑖 , 𝑆𝑆]

≤ 𝔼𝔼[𝑑𝑑𝑖𝑖𝑖𝑖𝑡𝑡 𝑅𝑅𝑖𝑖 , 𝑆𝑆−𝑖𝑖]

= 𝔼𝔼[𝑑𝑑𝑖𝑖𝑖𝑖𝑡𝑡 𝑆𝑆𝑖𝑖 , 𝑆𝑆−𝑖𝑖]

Proof:

⇒ Σ𝑖𝑖 𝔼𝔼 𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡 𝑅𝑅𝑖𝑖 ≤ Σ𝑖𝑖 𝔼𝔼 𝑑𝑑𝑖𝑖𝑖𝑖𝑡𝑡 𝑆𝑆𝑖𝑖 , 𝑆𝑆−𝑖𝑖 ≤ 𝔼𝔼 𝑀𝑀𝑆𝑆𝑇𝑇 𝑆𝑆

Theorem: 𝔼𝔼 𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐 ≤ 2 𝔼𝔼[𝑀𝑀𝑆𝑆𝑇𝑇 𝑅𝑅1, … ,𝑅𝑅𝑛𝑛]

[Garg G. Leonardi Sankowski 08]

price of uncertainty

Steiner tree

Offline Online

~1.3 Ω(log𝑛𝑛)

Set Cover 𝑂𝑂(log𝑛𝑛) Ω(log2 𝑛𝑛)

Max-K-find 1 O(𝐾𝐾/𝑛𝑛) Ω(1)
prophet, RO

BWC

2
prophet

𝑣𝑣1

𝑣𝑣2

𝑣𝑣3

𝑣𝑣4
𝑣𝑣5

𝑣𝑣6
𝑣𝑣1

𝑣𝑣2

𝑣𝑣3

𝑣𝑣4
𝑣𝑣5

𝑣𝑣6

Online Set Cover

Goal: pick smallest # sets to cover all elements.

|𝒮𝒮| = 𝑠𝑠 = # sets
|𝒰𝒰| = 𝑛𝑛 = # elements

[Alon Awerbuch Azar Buchbinder Naor 03]

𝑣𝑣6

𝑣𝑣5

𝑣𝑣4

𝑣𝑣3

𝑣𝑣2

𝑣𝑣1

Online Set Cover

𝑖𝑖1

𝑖𝑖2

𝑖𝑖3

𝑖𝑖4

𝑖𝑖5

𝑖𝑖6

𝒰𝒰
𝑛𝑛 elements

ℱ
𝑠𝑠 sets

[Alon Awerbuch Azar Buchbinder Naor 03]

Online Set Cover

Algorithm:
𝑂𝑂(log 𝑛𝑛 log 𝑠𝑠)

competitive

Q: What happens beyond the worst case?

[Alon Awerbuch Azar Buchbinder Naor 03, Feige Korman 05]

CR: Ω(log 𝑛𝑛 log 𝑠𝑠)
for deterministic algos
and for poly-time algos

𝑖𝑖1

Random Order (RO)

ℱ
𝑠𝑠 sets

𝒰𝒰
𝑛𝑛 elements

𝑖𝑖2

𝑖𝑖3

𝑖𝑖4

𝑖𝑖5

𝑖𝑖6

𝑣𝑣1

𝑣𝑣2

𝑣𝑣3

𝑣𝑣4

𝑣𝑣5

𝑣𝑣6

𝑣𝑣1

𝑣𝑣2

𝑣𝑣3

𝑣𝑣4

𝑣𝑣5

𝑣𝑣6

LearnOrCover
(Unit cost, exp time)

candidate solutions

𝑠𝑠
𝑘𝑘when random element 𝑣𝑣 arrives

2. remove candidates that don’t cover 𝑣𝑣

1. select random remaining candidate

pick any set covering 𝑣𝑣

pick random set from it

if 𝑣𝑣 not already covered, in parallel:

Q: do ½ of remaining candidates cover ½ of uncovered elements?

Yes: random set covers many uncovered elements!

No: random element removes many candidates!!
Sol 𝑅𝑅:

𝒰𝒰

𝒫𝒫

[Gupta Kehne Levin FOCS 21]

Assume we know k = OPT

𝒰𝒰 shrinks by 1 − 1
4𝑘𝑘

in expectation.

𝒫𝒫 shrinks by ⁄3 4 in expectation.

Case 2: > 1/2 of 𝑂𝑂 ∈ 𝒫𝒫 cover < 1/2 of 𝒰𝒰.

Case 1: ≥ 1/2 of 𝑂𝑂 ∈ 𝒫𝒫 cover ≥ 1/2 of 𝒰𝒰.

𝑅𝑅 covers
|𝒰𝒰|
4𝑘𝑘

in expectation.

≥ 1/2 of 𝑂𝑂 ∈ 𝒫𝒫 pruned w.p. ⁄1 2.

|𝒰𝒰| initially 𝑛𝑛
⇒ 𝑂𝑂(𝑘𝑘 log𝑛𝑛) COVER steps suffice.

|𝒫𝒫| initially 𝑚𝑚
𝑘𝑘 ≈ 𝑠𝑠𝑘𝑘

⇒ 𝑂𝑂(𝑘𝑘 log𝑠𝑠) LEARN steps suffice.

⇒𝑂𝑂(𝑘𝑘 log 𝑠𝑠𝑛𝑛) steps suffice.

[Gupta Kehne Levin FOCS 21]

LearnOrCover

Idea: Measure convergence with potential function

Claim 1: Φ(0) = 𝑂𝑂(log 𝑠𝑠𝑛𝑛), and Φ(𝑡𝑡) ≥ 0.

Claim 2: If 𝑣𝑣 uncovered, then 𝐸𝐸[ΔΦ] ≤ − 1
𝑘𝑘

.

Φ(𝑡𝑡) = 𝑐𝑐1 KL(𝑥𝑥∗||𝑥𝑥𝑡𝑡) +𝑐𝑐2 log|𝒰𝒰𝑡𝑡|

𝒰𝒰𝑡𝑡 := uncovered elements @ time 𝑡𝑡

Init. 𝑥𝑥 ← 1/𝑠𝑠.
@ time 𝑡𝑡, element 𝑣𝑣 arrives:

If 𝑣𝑣 covered, do nothing
Else:

(I) Buy random 𝑅𝑅 ∼ 𝑥𝑥.
(II) ∀𝑆𝑆 ∋ 𝑣𝑣, set 𝑥𝑥𝑆𝑆 ← 𝑟𝑟 ⋅ 𝑥𝑥𝑆𝑆

Renormalize 𝑥𝑥 ← 𝑥𝑥/∥ 𝑥𝑥 ∥1
Buy arbitrary set to cover 𝑣𝑣

𝑥𝑥∗ := uniform distribution on OPT

(Recall 𝑘𝑘 = |𝑂𝑂𝑂𝑂𝑇𝑇|)

(Unit cost)

∑
𝑆𝑆
𝑥𝑥𝑆𝑆∗log

𝑥𝑥𝑆𝑆∗

𝑥𝑥𝑆𝑆𝑡𝑡

If 𝔼𝔼𝑣𝑣 𝑥𝑥𝑣𝑣 > 1
4
⇒ 𝔼𝔼𝑅𝑅[𝑘𝑘 Δlog|𝒰𝒰𝑡𝑡|] drops by Ω 1 .

Else 𝔼𝔼𝑣𝑣[𝑘𝑘 Δ𝐾𝐾𝐾𝐾] drops by Ω 1 .

[Gupta Kehne Levin FOCS 21]

𝑐𝑐(𝑥𝑥) = 𝑐𝑐(𝑂𝑂𝑂𝑂𝑇𝑇)

LearnOrCover
(Some philosophy)

Perspective 1:

[Alon+ 03]
LearnOrCover

Perspective 2:

Define
𝑓𝑓(𝑥𝑥): = ∑

𝑣𝑣
max 0,1 − ∑

𝑆𝑆∋𝑣𝑣
𝑥𝑥𝑆𝑆

(Goal is to minimize 𝑓𝑓 in smallest # of steps)

𝛻𝛻𝑓𝑓|𝑆𝑆(𝑥𝑥) = # uncovered elements in 𝑆𝑆

RO reveals stochastic gradient…

Projection
in KL

∝ 𝐸𝐸[{𝑣𝑣 ∈ 𝑆𝑆 ∣ 𝑣𝑣 uncovered}]11

[Buchbinder G. Molinaro Naor 19]

[Gupta Kehne Levin FOCS 21]

price of uncertainty

Steiner tree

Offline Online

~1.3 Ω(log𝑛𝑛)

Set Cover 𝑂𝑂(log𝑛𝑛) Ω(log2 𝑛𝑛)

Max-K-find 1 O(𝐾𝐾/𝑛𝑛) Ω(1)
prophet, RO

BWC

O(1)
prophet

𝑂𝑂(log𝑛𝑛)
RO

today’s menu

models to go beyond worst-case: max-finding, spanning tree, set cover

but don’t overfit to these models…: max-k-finding

and perhaps use predictions…: paging/caching

robustness vs efficiency

define data model, then give algorithms for data from that model

danger: may overfit to the model

worst-case carefully chosen
data model

get best of both worlds?

too stylized/optimistic?pessimistic?

get strong resultsvery robust

semi-random models

Input first drawn from some (stochastic) data model

Then adversary corrupts in some (bounded) way

E.g., max-finding (secretary setting)

𝐺𝐺 “green” items appear according to the model

but adversary can inject 𝑅𝑅 red items in worst-case ways

get (at least) pre-corruption value?

[Bradac G. Singla Zuzic 19]
[Garg Kale Rohwedder Svensson 19]

[Molinaro Kesselhiem 19]

byzantine max-K-finding

Adversary chooses values for 𝐺𝐺 green and 𝑅𝑅 red items

Adversary chooses times in [0,1] for each red item
green items appear at random times in [0,1]

we don’t see colors, want value ≈ sum of top 𝐾𝐾 green items

𝑡𝑡 = 0 𝑡𝑡 = 1

[Bradac G. Singla Zuzic 19]

Adversary chooses values for 𝐺𝐺 green and 𝑅𝑅 red items

Adversary chooses times in [0,1] for each red item
green items appear at random times in [0,1]

we don’t see colors, want value ≈ sum of top 𝐾𝐾 green items

𝑡𝑡 = 0 𝑡𝑡 = 1

byzantine max-K-finding

recall algorithm
without corruptions?

[Bradac G. Singla Zuzic 19]

byzantine max-K-finding

Adversary chooses values for 𝐺𝐺 green and 𝑅𝑅 red items

Adversary chooses times in [0,1] for each red item
green items appear at random times in [0,1]

we don’t see colors, want value ≈ sum of top 𝐾𝐾 green items

𝑡𝑡 = 0 𝑡𝑡 = 1

fails with
corruptions!!

[Bradac G. Singla Zuzic 19]

but we can still do something…

Adversary chooses values for 𝐺𝐺 green and 𝑅𝑅 red items

Chooses times in [0,1] for each red item
green items appear at random times in [0,1]

we don’t see colors, want value ≈ sum of top 𝐾𝐾 green items

𝑡𝑡 = 0 𝑡𝑡 = 1

Informal Robustness Theorem:

If 𝐾𝐾 is at least ≈ log𝑛𝑛

then can achieve value Ω 𝑂𝑂𝑂𝑂𝑇𝑇 even with corruptions

and we have estimate of 𝑂𝑂𝑂𝑂𝑇𝑇 to within poly(𝑛𝑛)

[Argue G. Molinaro Singla 22]

Good news: extends to higher-dimensional allocation problems

robust algorithmic thinking

1. Show “robust” single-parameter algorithm:
if parameter chosen right ⇒ get good value even after corruption

2. Learn right parameter setting “robustly”

𝑡𝑡 = 0 𝑡𝑡 = 1

which
single-parameter

algorithm?

[Argue G. Molinaro Singla 22]

what threshold? idea #1

Suppose green values are 𝐴𝐴1 > 𝐴𝐴2 > … > 𝐴𝐴𝑛𝑛

Idea #1: pick items at least threshold 𝑇𝑇∗ = 𝐴𝐴𝑘𝑘

𝑡𝑡 = 0 𝑡𝑡 = 1

is this robust to
injecting

bad items??

Imagine
𝐴𝐴1 = … = 𝐴𝐴𝑘𝑘−1 = 𝑀𝑀

𝐴𝐴𝑘𝑘 = 1
inject reds of value 1

idea #2: a robust threshold

Suppose green values are 𝐴𝐴1 > 𝐴𝐴2 > … > 𝐴𝐴𝑛𝑛

Idea #2: pick items at least threshold 𝑇𝑇∗ =

Adding red items does not hurt…

𝑡𝑡 = 0 𝑡𝑡 = 1

OPT/2𝑘𝑘

OPT/2𝑘𝑘

each picked red item
also gives 𝑂𝑂𝑂𝑂𝑇𝑇/2𝑘𝑘…

∃ good solution:
OPT “loses” at most
𝑂𝑂𝑂𝑂𝑇𝑇
2𝑘𝑘

⋅ 𝑘𝑘 ≤
𝑂𝑂𝑂𝑂𝑇𝑇

2

robust algorithmic thinking

1. Show robust “single-parameter” algorithm:
right threshold ⇒ get good value even after corruption

2. Learn this parameter robustly

𝑡𝑡 = 0 𝑡𝑡 = 1

step 2: learn threshold robustly

a. Estimate of OPT to within poly(𝑛𝑛)
⇒ O(log𝑛𝑛) different guesses for OPT, need to choose right guess

b. Use online learning (“experts” algorithm) to do almost as well as best one

Break time [0,1] into 𝑇𝑇 intervals

Use feedback from each interval to choose guess for next interval

Payoff ≥ Ω(𝑂𝑂𝑂𝑂𝑇𝑇) − 𝑇𝑇× log #experts × 𝑂𝑂𝑂𝑂𝑂𝑂
𝑂𝑂

small if 𝑇𝑇 is large. But want measure concentration, so 𝑇𝑇 not too large!

our result…

Adversary chooses values for 𝐺𝐺 green and 𝑅𝑅 red items

Chooses times in [0,1] for each red item
green items appear at random times in [0,1]

we don’t see colors, want value ≈ sum of top 𝐾𝐾 green items

𝑡𝑡 = 0 𝑡𝑡 = 1

Informal Robustness Theorem:

If 𝐾𝐾 ≥ 𝑂𝑂(log𝑛𝑛 log log𝑛𝑛)

then we can achieve value Ω 𝑂𝑂𝑂𝑂𝑇𝑇 even with corruptions

and we have estimate of 𝑂𝑂𝑂𝑂𝑇𝑇 to within poly(𝑛𝑛)

[Argue G. Molinaro Singla 22]

Good news: extends to higher-dimensional allocation problems

Online Allocation

?? ? ? ? ? ? ?13 3 19 1 7 12 22525

[Agrawal Wang Ye 09]

Budget

K

Value
25 +13 + 7

Online Allocation

?? ? ? ? ? ? ?13 3 19 1 7 12 22525 7

max
𝑥𝑥∈ 0,1 𝑛𝑛 𝑣𝑣 ⋅ 𝑥𝑥

𝐴𝐴𝑥𝑥 ≤ 𝐾𝐾𝟏𝟏

columns of A appear online

Assume: 𝐴𝐴 ∈ 0,1 𝑑𝑑×𝑛𝑛

and 𝐾𝐾 ≫ 1

Want smallest 𝐾𝐾 to get 1 + 𝜀𝜀 -apx for value

[Agrawal Wang Ye 09]

packing with corruptions

Maintain
good dual
prices via
low-regret

learning

Greedily assign
primal

Low-regret
learning algo

Random order

Byzantine

Sample

[Argue G. Singla Molinaro 22]

Estimate
OPT

rest of today’s menu…

models to go beyond worst-case: max-finding, spanning tree, set cover

but don’t overfit to these models…: max-k-finding

and perhaps use predictions…: paging/caching

(ML-based) predictions…

Use predictions to get better algorithms?

E.g., for caching in memory systems, suppose predict furthest-in-future page

+ If predictions perfect, then get optimal #page faults (a.k.a. Belady’s rule)

- what if predictions are correct only 10% of the time?

caching with predictions

Informal Theorem:

If predict furthest-in-future page with constant probability

(and no other page predicted too often)

then get constant-competitive paging.

Q: “right” prediction model? Sample complexity of learning?

[G. Panigrahi Subercaseaux Sun 22]

today we saw…

models to go beyond worst-case: max-finding, spanning tree, set cover

but don’t overfit to these models…: max-k-finding

and perhaps use predictions…: paging/caching

to summarize

the worst-case analysis of algorithms has served us well

but we should also look beyond these robust/pessimistic guarantees

+ when do our algorithms outperform these worst-case bounds?

+ what if the input is stochastic?

+ are we over-fitting to the stochastic model?

+ can we train some model and then use its predictions?

+ …
Thanks!

	Online Algorithms:�going beyond the worst-case
	analysis of algorithms
	analysis of algorithms
	analysis of algorithms
	Online Algorithms
	Online (Steiner) Tree
	Online Set Cover
	max-K finding
	price of uncertainty
	today’s menu
	price of uncertainty
	max-1 finding
	going beyond the worst case
	prophet model
	prophet model
	secretary model
	algos with predictions
	price of uncertainty
	rest of today’s menu
	online (steiner) tree
	prophet (steiner) tree
	prophet (steiner) tree
	price of uncertainty
	Online Set Cover
	Online Set Cover
	Online Set Cover
	Random Order (RO)
	LearnOrCover
	Slide Number 31
	LearnOrCover
	LearnOrCover
	price of uncertainty
	today’s menu
	robustness vs efficiency
	semi-random models
	byzantine max-K-finding
	byzantine max-K-finding
	byzantine max-K-finding
	but we can still do something…
	robust algorithmic thinking
	what threshold? idea #1
	idea #2: a robust threshold
	robust algorithmic thinking
	step 2: learn threshold robustly
	our result…
	Online Allocation
	Online Allocation
	packing with corruptions
	rest of today’s menu…
	(ML-based) predictions…
	caching with predictions
	today we saw…
	to summarize�

